Alternator for Forklift

Alternator for Forklift - An alternator is actually a device that changes mechanical energy into electric energy. It does this in the form of an electrical current. In essence, an AC electric generator can likewise be referred to as an alternator. The word normally refers to a small, rotating machine powered by automotive and other internal combustion engines. Alternators which are located in power stations and are driven by steam turbines are actually referred to as turbo-alternators. The majority of these machines use a rotating magnetic field but occasionally linear alternators are likewise utilized.

A current is generated inside the conductor whenever the magnetic field surrounding the conductor changes. Usually the rotor, a rotating magnet, spins within a set of stationary conductors wound in coils. The coils are located on an iron core referred to as the stator. When the field cuts across the conductors, an induced electromagnetic field also called EMF is produced as the mechanical input makes the rotor to revolve. This rotating magnetic field produces an AC voltage in the stator windings. Usually, there are 3 sets of stator windings. These physically offset so that the rotating magnetic field produces 3 phase currents, displaced by one-third of a period with respect to each other.

In a "brushless" alternator, the rotor magnetic field may be caused by production of a lasting magnet or by a rotor winding energized with direct current through slip rings and brushes. Brushless AC generators are usually found in larger devices compared to those used in automotive applications. A rotor magnetic field could be produced by a stationary field winding with moving poles in the rotor. Automotive alternators often utilize a rotor winding that allows control of the voltage generated by the alternator. It does this by changing the current in the rotor field winding. Permanent magnet machines avoid the loss due to the magnetizing current within the rotor. These machines are limited in size due to the cost of the magnet material. The terminal voltage varies with the speed of the generator as the permanent magnet field is constant.